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Improving simple explicit methods for unsteady open
channel and river �ow
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SUMMARY

A rigorous study of the explicit Lax–Friedrichs scheme for its application to one-dimensional shallow
water �ows is presented. The de�ciencies of this method are identi�ed and the way to overcome them
are presented. It is compared to the explicit �rst order upwind scheme and to the explicit second order
Lax–Wendro� scheme by means of the simulation of several test cases with exact solution. All three
schemes in their best balanced version are applied to the simulation of a real river �ood wave leading
to very satisfactory results. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Explicit numerical schemes are based on the Euler time integration rule. They use the value
of the variables at a known time level tn so that the unknown values at a new time level tn+1

depend only on them. This conceptual simplicity justi�es the wide acceptance and application
of explicit schemes to time dependent problems in Computational Fluid Dynamics. There is
a disadvantage common to these methods; it is the limitation on the time step size imposed
by the Courant–Friedrichs–Lewy [1] stability condition which can become highly restrictive.
Their application to transient �ows is nevertheless extensive and frequent and this work is
devoted to the study of some of the best known explicit schemes.
The �rst explicit methods developed to solve transient �ow equations were based on central

di�erences. Among them, one of the best known is the Lax–Friedrichs scheme [2]. It is a
simple and robust scheme which however relies on an arti�cial global viscosity coe�cient
that a�ects the numerical solutions. It can become excessively di�usive and inaccurate when
used to simulate steady state solutions in the context of shallow water �ows. In an attempt
to overcome these limitations, Lax–Wendro� [3] proposed a second order in space and time
scheme, based on the series development of the di�erential equations up to second order in
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time. Their method is more accurate but, on the other hand, can generate spurious numerical
oscillations near sharp gradients. The Lax–Wendro� scheme requires the estimation and use of
the �ux Jacobian. For some problems this can be cumbersome and traditionally has represented
a disadvantage.
From a di�erent approach, upwind schemes are based on non-centered di�erences biased

towards the physical region of dependence of the physical equation. They were �rst proposed
by Courant et al. [4] for hyperbolic equations in characteristic form and represented a mile-
stone in shock propagation problems. In a coupled system of non-linear equations such as the
shallow water equations, it may be di�cult to identify correctly the region of in�uence associ-
ated to every propagation speed and, at the same time, to preserve the conservative character
of the scheme. This is the reason why upwind schemes tend to be more complex than central
schemes. One of the �rst conservative forms proposed were the ‘�ux vector splitting’ [5, 6],
which do not have general validity for systems of non-linear equations.
Godunov [7] was the �rst to introduce the idea of solving non-linear systems as a series of

local Riemann problems with exact solution. A number of approximate Riemann solvers came
later on in an attempt to simplify Godunov’s idea. Among them, Roe’s �rst order method
deserves special mention [8]. Further approaches incorporating more nodes to the discretization
of the spatial derivatives led to higher order upwind methods with excellent properties.
Both upwind and central schemes solve incorrectly the �ow accelerations with transition

from sub- to supercritical �ow leading to unphysical solutions. Lax–Friedrichs scheme is the
exception due to its arti�cial viscosity. Harten and Hyman [9] where the �rst to correct Roe’s
scheme in order to yield physically acceptable solutions by means of a suitable arti�cial
viscosity.
Almost all the numerical schemes used in Computational Hydraulics derive from original

developments in Gas Dynamics. One of the main di�culties in the derivation comes from
the presence of topography e�ects under the form of source terms in the equations. They
contain derivatives and can be dominant in some cases. Glaister [10] �rst proposed the upwind
discretization of source terms in the context of upwind schemes. The improvement of earlier
ideas has been investigated, mainly for steady state solutions by [11–13].
In this work, the basic properties of general one-dimensional schemes will be presented

and analysed for the Lax–Friedrichs scheme, Lax–Wendro� scheme and the �rst order upwind
scheme. An optimized Lax–Friedrichs scheme is proposed so that, depending on the choice of
the arti�cial viscosity applied, it behaves as the �rst order upwind or the Lax–Wendro� scheme
showing how a very simple and easy to use numerical method can improve its properties.
Several cases with analytical solutions are presented including some with bed slope and friction
e�ects. Finally all four schemes will be applied to a realistic river �ow problem and their
performance compared.

2. DIFFERENT FORMS OF THE GOVERNING EQUATIONS

Di�erent forms of the one-dimensional shallow water or St. Venant equations can be written.
They all start from a cross section average of the basic �ow equations and the underlying
hypothesis of hydrostatic pressure distribution p

p=pat + g(zs − z)
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where pat is the atmospheric pressure, zs is the free surface level and z represents the vertical
level of a generic point. From this assumption, the cross section averaged pressure term
derivative along the main �ow direction is

A
@p
@x
=
∫ zs

zb

�(x; z)
@
@x
[pat + g(zs − z)] dz=

∫ zs

zb

�(x; z)g
@zs
@x
dz= gA

@zs
@x

where A is the cross sectional area, zb is the bottom level and �(x; z) is the variable channel
width. Assuming also adequate and convenient friction and turbulence models denoted by E,
a �rst version of the cross sectional averaged di�erential equations is

@A
@t
+
@Q
@x

= 0

@Q
@t
+
@
@x

(
Q2

A

)
= E − gA @zs

@x

(1)

in terms of the cross sectional area and discharge Q. This may be seen as a quasi-conservative
form of the type

@u(x; t)
@t

+
dFqc(x; u)
dx

=Sqc(x; u) (2)

in which u is the conserved variable, Fqc the �ux and Sqc the source term:

u=

(
A
Q

)
; Fqc =

(
Q
Q2

A

)
; Sqc =

(
0

E − gA dzs
dx

)

but this �ux, however, does not contain all the information relevant to propagation phenomena
in open channel �ows. A fully conservative form of the equations can be built from (1). The
steps to follow start using I1 as the following integral:

I1 =
∫ zs

zb

�(x; z)(zs − z) dz

and the property that

d
dx
(gI1) = g

d
dx

[∫ h

0
�(h− z′) dz′

]
= g

(
A
dh
dx
+ I2

)

dzs
dx
=
dh
dx
+
dzb
dx

with h the water depth and:

I2 =
∫ h

0

d�(x; z′)
dx

(h− z′) dz′

representing the pressure forces exerted by the walls in the �ow direction and the derivative
(d�(x; z′)=dx) de�ned over the variable z′= z − zb. The conservative form is therefore:

@u(x; t)
@t

+
dFc(x; u)
dx

=Sc(X; u) (3)
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with the new �ux and source terms:

u=

(
A
Q

)
; Fc =

(
Q

Q2

A + gI1

)
; Sc =

(
0

E + g(I2 − A dzbdx )

)

The �ux in this formulation contains all the relevant physical terms.
It is worth noting here that a careful distinction must be made between total and partial

spatial derivatives:

dF(x; u)
dx

=
[
@F(x; u)
@x

]
u=cte

+
[
@F(x; u)
@u

]
x=cte

@u(x; t)
@x

=
@F(x; u)
@x

+ J(x; u)
@u(x; t)
@x

(4)

with J= @F=@u the �ux Jacobian. Therefore, (dF=dx) �= (@F=@x) and it should be remembered
that, at the discrete level, �nite di�erences are always approximations of the total derivative.
This is very important and has traditionally been neglected. From the conservative form (3),
a new, non-conservative form can be derived using (4):

@u(x; t)
@t

+ J(x; u)
@u(x; t)
@x

=Snc(x; u) (5)

where

J=
@Fc

@u
=

(
0 1

c2 − u2 2u

)
; Snc =Sc − @Fc

@x
=

(
0

E − gA dzsdx + c2 @A@x

)

being c=
√
g(A=B) the celerity of the small surface perturbations and B the channel top width.

The Jacobian in non conservative form (5) can be diagonalized and the equations in the
system can be made independent. If P is the matrix diagonalizing the �ux Jacobian J, they
verify

J=P�P−1; �=P−1JP

with � the diagonal matrix made of the eigenvalues of J.
For the shallow water system these matrices are:

P=

(
1 1
�1 �2

)
; P−1 =

1
�2 − �1

(
�2 −1

−�1 1

)
; �=

(
�1 0

0 �2

)
(6)

with � the eigenvalues of J; �1 = u+ c; �2 = u− c. Left product of (5) by matrix P−1 gives:

P−1 @u
@t
+�P−1 @u

@x
=P−1Snc (7)

and allows the de�nition of the characteristic variables w holding the following relation at
di�erential level:

dw=P−1 du (8)

Substitution in (7) provides the characteristic form of the di�erential equations

@w(x; t)
@t

+�(x;w)
@w(x; t)
@x

=P−1(x;w)Snc(x;w) (9)
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3. TEST CASES WITH EXACT SOLUTION

The equations presented in the previous section do not have exact or analytical solution in
general but only in a few particular cases. That is the reason why numerical methods have to
be studied, adapted and carefully applied. As presented before, the equations can be cast under
the form of conservation equations with source terms. The best form to start analysing the
properties and performance of the numerical schemes is to use them to solve cases with exact
solution. A few basic one-dimensional test cases of academic conservation laws with exact
solution will be presented �rst: the linear advection equation and the inviscid Burgers equation.
Going further the ideal dam break problem will be used as the purest advection example in
the shallow water context. Then, the in�uence of the source terms will be analyzed by means
of a still water equilibrium case and, �nally, two steady channel �ow problem as stated by
MacDonald will help to validate the methods in presence of source terms [14].

3.1. Linear advection equation

The simplest conservation law is the linear advection equation

@u
@t
+ a

@u
@x
=0 (10)

where u is the conserved/transported variable and a is the constant advection speed. All the
di�erential forms previously identi�ed in the shallow water system are identical in this trivial
case, being the characteristic lines straight and parallel. Given initial conditions, the exact
solution to this equation is

u(x; t)= u(x − at; 0) (11)

It is usual to study the advection of initial square waves like

u(x; 0)=

{
umax; ∀x ∈ [x0 − w

2 ; x0 +
w
2 ]

umin; ∀x =∈ [x0 − w
2 ; x0 +

w
2 ]

(12)

where w represents the square width, due to the challenge associated to the discontinuities.
Another frequent case is that of a gaussian pro�le like

u(x; 0)= umin + (umax − umin) exp
[
−
(
2
x − x0
w

)2]
(13)

We shall use a domain [0, 100], and values x0 = 20; w = 20; umin =0:2 and umax =0:8, to
compare performances at a time t=60. The units are not speci�ed as we are not dealing with
any particular physical magnitude.

3.2. Inviscid Burgers equation

The inviscid Burgers equation is a non-linear advection equation closely related to the inviscid
�ow equations. It represents an intermediate step between the simplicity of the linear advection
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and the complexity of the non linear systems. In conservative and non-conservative form it
is written as

@u
@t
+
@
@x

(
u2

2

)
=
@u
@t
+ u

@u
@x
=0 (14)

The analytical solution to this equation can be easily derived from its characteristic form
only for spatially increasing initial conditions since, in this case, the straight characteristic
lines diverge. When the initial conditions are spatially decreasing functions, the characteristic
lines tend to converge and eventually overtake each other. This corresponds to discontinuous
solutions. A simetrical transcritical discontinuous initial condition like

u(x; 0)=

{
u0; ∀x60
−u0; ∀x¿0

will not be transported since

@u
@t
= − @

@x

(
u2

2

)
=0; ∀x

and, in general, the evolution of a decreasing jump like

u(x; 0)=

{
umax; ∀x60
umin; ∀x¿0

is dictated by a jump (shock) speed

U =
umax + umin

2
(15)

The inviscid Burgers equation is useful to calibrate the behaviour of the numerical schemes
both in propagating non-linear discontinuities and in coping with sign changes in the function
(transcritical points). The following initial conditions consisting of a square shape with two
transcritical jumps will be used as test case:

u(x; 0)=

{
−u1; ∀x ∈ (−∞; x1)∪ (x2;∞)
u2; ∀x ∈ [x1; x2]

The corresponding analytical solution is

tc =2
x2 − x1
u2 + u1

t6tc⇒u(x; t) =




−u1; x ∈ (−∞; x1 − u1t)∪ (x2 + u2−u1
2 t;∞)

x − x1
t

; x ∈ [x1 − u1t; x2 + u2t)
u2; x ∈ [x2 + u2t; x2 + u2−u1

2 t]
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t¿tc⇒u(x; t) =



−u1; x ∈ (−∞; x1 − u1t)∪ (x1 + (u2 + u1)
√
ttc;∞)

x − x1
t

; x ∈ [x1 − u1t; x1 + (u2 + u1)
√
ttc]

The domain used will be [0, 100], with x1 = 32:5; x2 = 77:5; u1 = 1; u2 = 2 for a time t=20.

3.3. Ideal dam break

The dam break problem is one of the most classical unsteady problems with discontinuous
analytical solution. When discontinuous initial conditions are assumed in a prismatic, �at and
frictionless channel, the theory of characteristics and that of shock waves together lead to
the solution [15]. This solution consists of a depression wave linked to a shock wave by an
acceleration branch. This branch can go through a critical section depending only on the initial
water level discontinuity. An initial discontinuity in the free surface of 1:0.1 in a 200m long
channel will be used as test case and the solution analyzed at t=20 s to avoid interaction
with the boundaries.

3.4. Hydrostatic equilibrium

Still water situations in presence of variable bed and channel shape are a challenging problem
for advection schemes. In this case, the equations in quasi-conservative form (1) reduce to

@zs
@x
=0

that is, the free surface level is uniform. Advection schemes are not always able to keep the
static equilibrium at the discrete level. A test case proposed by Goutal & Maurel [16] has
been selected. It is a channel rectangular in cross section with variable width and bed level
as Figure 1 shows. A Manning coe�cient n=0:01 is assumed. The evolution in time of an
initial uniform 12m free surface level of still water will be studied during 200 s in a 150 cell
grid.
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Figure 1. Goutal & Maurel channel: (a) initial water surface pro�le and
bed level variation, (b) plant view.
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3.5. MacDonald’s test case

When the shallow water equations are used to model hydraulic problems involving bed slope
changes and bed friction, the system is no longer homogeneous and the source terms have
to be taken into account. On the other hand, this renders more di�cult and often impossible
to �nd exact solutions for validation. MacDonald [14] proposed a set of test cases based
on steady �ow in channels of varying bed slope and/or breadth by calculating the analytical
slope and breadth functions compatible with constant discharge conditions given an analytical
water depth function. Among them, we have chosen two examples. The �rst (MacDonald-1)
concentrates on the behaviour in case of subcritical and continuous water pro�le and is a
rectangular channel 150 m long and de�ned by Figures 2(a) and 2(b). A second example
(MacDonald-2) consists of a 650 m long trapezoidal channel with a bed variation given
by a slope function of x as depicted in Figure 3(a) and 3(b). In both cases a roughness
coe�cient n=0:03 and a constant discharge Q=20m3=s are assumed. There are some points
of transcritical �ow. In both cases a 400 cell grid will be used.
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Figure 2. Analytical solution for the bed and depth pro�les (a) and cross section
(b) in the MacDonald-1 test case.
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Figure 3. Analytical solution for the bed and depth pro�les (a) and cross
section (b) in the MacDonald-2 test case.
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4. EXPLICIT SCHEMES

Three well known explicit numerical schemes will be considered here. Their basic properties
regarding stability, monotonicity and conservation will be stated. For the sake of completeness
and easy reading, de�nitions are provided in the appendix at the end of the manuscript.

4.1. Lax–Friedrichs scheme

The original scheme of Lax–Friedrichs [3] was proposed for equations and systems of con-
servation laws without source terms in the form

�uni =
1
2
(�uni+(1=2) − �uni−(1=2))− �t

2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]
(16)

A di�erent version was later proposed [17]

�uni =
1− �
2

(�uni+(1=2) − �uni−(1=2))− �t
2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]
(17)

where � is a weighting parameter related to arti�cial viscosity. The extension of Lax–Friedrichs
scheme to equations with source terms is open to di�erent possibilities. The simplest is a nodal
or pointwise discretization as follows:

�uni =
�
2
(�uni+(1=2) − �uni−(1=2)) + �tSni − �t

2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]

with �=1 − �. Sometimes, in presence of important source terms like those appearing in
practical river �ow applications, an implicit or semi-implicit treatment is necessary:

Sn+�i = �Sn+1i + (1− �)Sni ≈ Sn+i + �Kni�u
n
i (18)

with K= @S=@u the Jacobian of the source terms, and:

(1− ��tKni )�uni =
�
2
(�uni+(1=2) − �uni−(1=2)) + �tSni − �t

2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]
(19)

Another option is a non-centred discretization of the source term. In this case, and keeping
pointwise the implicit part for simplicity, the Lax–Friedrichs scheme (LF) becomes

(1− ��tKni )�uni =
�
2
(�uni+(1=2) − �uni−(1=2)) +

�t
2
(Gni−(1=2) +G

n
i+(1=2)) (20)

where G can be de�ned in any of the equivalent forms, conservative (A7), quasi-conservative
(A8) or non-conservative (A9).
On the other hand, being a three point scheme of type (Al5), its coe�cients for the linear

advection equation are:

A=B=0; C= − a�t
2�x

; D=
�
2
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and using (A18), it is controlled by the stability condition:∣∣∣∣a �t�x
∣∣∣∣
2

6�61

When applied to a system of equations like the shallow water system in conservative form,
it can be said that the Lax–Friedrichs scheme is stable and dissipative when:

CFL2¡�¡1 (21)

where CFL is the Courant Friedrichs Lewy number [1] de�ned as

CFL= max
∣∣∣∣�k �t�x

∣∣∣∣ (22)

with �k the eigenvalues of the �ux Jacobian matrix J = @Fc=@u. At the same time, using
(A21), it is easy to prove that the scheme is conditionally TVD, having as su�cient condition:

CFL6�61 (23)

more restrictive, as expected, than the stability condition (21).
The error introduced by the arti�cial viscosity � is of second order in space, hence, the

scheme is �rst order accurate in space and time with a truncation error:

E= − @2u
@t2

�t2

2
+ �

@2u
@x2

�x2

2
+O(�t3;�t�x2;�x4) (24)

When applied to a homogeneous steady problem, the steady solution is obtained from

Fni+1 =F
n
i−1 +

�
�t
(�uni+(1=2) − �uni−(1=2))

so that � produces also a second order error in the steady solution. With source terms dis-
cretized pointwise, the steady solution comes from

Fni+1 =F
n
i−1 + 2S

n
i�x +

�
�t
(�uni+(1=2) − �uni−(1=2))

and with non-centred source terms:

Fni+1 =F
n
i−1 + (S

n
i+(1=2) + S

n
i−(1=2))�x +

�
�t
(�uni+(1=2) − �uni−(1=2))

being both �rst order rules of integration.
Finally, Lax–Friedrichs is also a conservative scheme since, following the de�nitions given

in Appendix A, it admits a nodal �ux and a wave decomposition in the form

FTi = F
n
i

�FLi+(1=2) =
1
2
�Fni+(1=2) +

��x
2�t

�uni+(1=2)

�FRi+(1=2) =
1
2
�Fni+(1=2) − ��x

2�t
�uni+(1=2)
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or a numerical �ux as

F∗
i+(1=2) =

1
2

(
Fni + F

n
i+1 − � �x

�t
�uni+(1=2)

)

4.2. Optimized Lax–Friedrichs scheme

Both the stability analysis (21) and the TVD analysis (23) applied to Lax–Friedrichs scheme
(17) lead to the conclusion that we are interested in values of � smaller than but close to
unity. On the other hand, the truncation error (24) tells us that the spatial error in this method
is directly proportional to �. A compromise becomes necessary to enforce global conditions
as close as possible.
In this work, a modi�cation of Lax–Friedrichs scheme is proposed so that the parameter �

is locally de�ned. To preserve the conservation property, the following wave decomposition
is proposed:

FTi = F
n
i

�FLi+(1=2) =
1
2
�Fni+(1=2) +

�x
2�t

�ni+(1=2)�u
n
i+(1=2)

�FRi+(1=2) =
1
2
�Fni+(1=2) − �x

2�t
�ni+(1=2)�u

n
i+(1=2)

or the following numerical �ux:

F∗
i+(1=2) =

1
2

(
Fni + F

n
i+1 − �x

2�t
�ni+(1=2)�u

n
i+(1=2)

)

In this new version of the scheme, �, instead of being a constant parameter, is a variable
parameter de�ned at the interior of every cell i + 1

2 . The resulting scheme with pointwise
source term is,

(1− ��tKni )�uni =
1
2
(�ni+(1=2)�u

n
i+(1=2) − �ni−(1=2)�uni−(1=2)) + �tSni

− �t
2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]
(25)

and with non-centred source term

(1− ��tKni )�uni =
1
2
(�ni+(1=2)�u

n
i+(1=2) − �ni−(1=2)�uni−(1=2)) +

�t
2
(Gni−(1=2) +G

n
i+(1=2)) (26)

where G can be de�ned in any of the equivalent forms, conservative (A7), quasi-conservative
(A8) or non-conservative (A9). By locally taking the smallest possible value of � compatible
with stability, the error is minimized:

�ni+(1=2) =
[
max(|�k |ni+1; |�k |ni )

�t
�x

]2
(27)
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where �k are the eigenvalues of the conservative �ux Jacobian. In order to prevent oscillations,
the minimum value of � compatible with (23) gives

�ni+(1=2) = max(|�k |ni+1; |�k |ni )
�t
�x

(28)

and, in any case, for stability and TVDness, the scheme must follow

CFL61

Note that, in the scalar case, condition (27) makes this scheme equivalent to Lax–Wendro�
scheme and condition (28) makes it equivalent to the �rst order upwind scheme. We shall
come back to this point and show examples in later sections.
The truncation error of the modi�ed scheme is

E=
[(
�− 1

2

)
@S
@t

− 1
2
@2F
@t@x

]n
i
�t2 +

@
@x

(
�
2
@u
@x

)
�x2 +O(�t3;�t�x2;�x4)

When applying this scheme to the shallow water equations, apart from the necessity of a
careful choice of the arti�cial viscosity as described above, a new di�culty appears. An error
in conservation may be introduced by the viscosity in the convergence to the steady state. To
explain this, �rst let us consider the truncation error of the scheme in steady state:

E ≈ @
@x

(
�
2
@u
@x

)
�x2 =

1
2
@
@x

[
�

( @A
@x

@Q
@x

)]

and the fact that, the steady state system of equations is

@Q
@x
=0

S − @F
@x
=0

with F and S the �ux and source term, respectively, in the momentum equation.

F =
Q2

A
+ gI1

S = E + g
(
I2 − A dzb

dx

)

This means that the numerical error disappears from the momentum equation as the solution
converges to the steady state but not from the mass equation when A changes with x. The
idea proposed in this work is to adapt the scheme so that, keeping the previous properties, it
makes the conservation error tend to zero during convergence to the steady state.
Di�erencing the physical �ux F we get

@F
@x
=(c2 − u2) @A

@x
+ 2u

@Q
@x
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hence the following expression is obtained:

@A
@x
=

1
c2 − u2

(
@F
@x

− 2u @Q
@x

)

which does not vanish in steady state. The following can be used instead:

@A
@x
+

S
u2 − c2 =

1
u2 − c2

(
S − @F

@x
+ 2u

@Q
@x

)

which tends to zero as the solution converges to steady state. Unfortunately, this term is
singular in transcritical cases being the error introduced inversely proportional to u2 − c2,
which can become very important near critical state. Two possibilities are envisaged for the
discretization of the mass equation, leading to the following optimized Lax–Friedrichs scheme
(OLF).

(1− ��tKni )�uni =
1
2
(�ni+(1=2)�v

n
i+(1=2) − �ni−(1=2)�vni−(1=2)) +

�t
2
(Gni−(1=2) +G

n
i+(1=2)) (29)

where

�vi+(1=2) =


modmin (�A; 1

u2−c2 (S�x − �F + 2u�Q))

�Q



i+(1=2)

and the following function is de�ned:

modmin(f; g)=



0 if fg60
f if |f|¡|g| and fg¿0
g if |f|¿|g| and fg¿0

(30)

The performance of the modi�ed Lax–Friedrichs scheme when supplied with the above
arti�cial viscosity is shown in the section corresponding to numerical results.
For the sake of completness, in order to provide a reference and all the information nec-

essary to compare the properties and performance of Lax–Friedrichs scheme, the �rst order
upwind and the second order Lax–Wendro� schemes are summarized in the following sub-
sections.

4.3. First order upwind scheme

Upwind schemes are based in a non-centred approximation of the spatial derivatives according
to the sense of propagation of information in the equation. Therefore they are known to
o�er a discrete solution closer to the physical process than a centred scheme. In order to
consider the in�uence of all the possible propagation velocities, preserving at the same time
the conservative character of the scheme, the characteristic form of the conservative schemes
(A14) can be used. In explicit form with semi-implicit source term discretization becomes

(1− ��tKni )�uni =�t[(P�LP−1G)ni−(1=2) + (P�
RP−1G)ni+(1=2)]
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where G can be expressed in any of the equivalent forms previously de�ned. The upwind
character of the scheme is given by the following de�nition of the matrices:

�L = �+ =
1
2
[I+ sign(�)]

�R = �−=
1
2
[I − sign(�)]

G± = P�±P−1G

(31)

From which the �rst order explicit upwind scheme with semi-implicit and upwind source term
discretization follows:

(1− ��tKni )�uni =�t[(G+)ni−(1=2) + (G−)ni+(1=2)] (32)

Pointwise source term discretization leads to

(1− ��tKni )�uni =�t
[
Sni −

(
�F+

�x

)n
i−(1=2)

−
(
�F−

�x

)n
i+(1=2)

]
(33)

where

�F±=P�±P−1�F (34)

Being a three point scheme of the type (A15) with coe�cients, in the linear case:

A=B=0; C= − a�t
2�x

; D=
∣∣∣∣ a�t2�x

∣∣∣∣
it is easy to verify that using (A18) and (A21), the scheme is stable and TVD when

CFL61

According to previous de�nitions, the conservative character of the scheme is proved by the
existence of a nodal �ux and wave decomposition

FTi =F
n
i

�FLi+(1=2) = (�F
+)ni+(1=2) �FRi+(1=2) = (�F

−)ni+(1=2)

and a numerical �ux:

F∗
i+(1=2) =F

T
i + �F

R
i+(1=2) =

1
2
[Fni + F

n
i+1 − |J|ni+(1=2) �uni+(1=2)]

with |J|=P|�|P−1.
The resulting scheme is unable to deal with subcritical-supercritical transitions, requiring

the addition of extra viscosity at those points. The correction to that problem preserving
conservation requires the following modi�cation of the wave decomposition

FTi = F
n
i ; �FLi+(1=2) = (�F

+)ni+(1=2) + �
n
i+(1=2) �u

n
i+(1=2);

�FRi+(1=2) = (�F
−)ni+(1=2) − �ni+(1=2)�uni+(1=2) (35)
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and the following of the numerical �ux:

F∗
i+(1=2) =F

T
i + �F

R
i+(1=2) =

1
2
[Fni + F

n
i+1 − |J|ni+(1=2)�uni+(1=2)]− �ni+(1=2) �uni+(1=2) (36)

The particular way to introduce this arti�cial viscosity or entropy correction in this work
is

�ni+(1=2) =
{

1
4�(�

k)i+(1=2) if (�k)ni ¡0 and (�
k)ni+1¿0

0 otherwise
(37)

4.4. Lax–Wendro� scheme

The original idea from Lax and Wendro� was proposed for equations without source terms
and is based on a Taylor series of the conservation law to second order in time:

un+1i = uni −
(
@F
@x

)n
i
�t − @

@x

(
@F
@t

)n
i

�t2

2
+O (�t3)

= uni −
(
@F
@x

)n
i
�t − @

@x

(
J
@u
@t

)n
i

�t2

2
+O (�t3)

= uni −
(
@F
@x

)n
i
�t +

@
@x

(
J
@F
@x

)n
i

�t2

2
+O (�t3)

together with a central discretization of the spatial derivatives

�uni = − �t
2

[(
1 +

�t
�x

Jni−(1=2)

) (
�F
�x

)n
i−(1=2)

+
(
1− �t

�x
Jni+(1=2)

) (
�F
�x

)n
i+(1=2)

]
(38)

and produces a method of second order in space and time [18].
It is a 3 point scheme with coe�cients, in the linear case

A=B=0; C= − a�t
2�x

; D=
a2�t2

2�x2

hence, applying (A18), the stability condition of the scheme is

CFL61

Using on the other hand (A21), it is clear that the scheme cannot be ensured to be TVD.
Lax–Wendro� scheme is conservative with a nodal �ux and wave decomposition:

FTi = F
n
i

�FLi+(1=2) =
1
2

(
1 +

�t
�x

J
)n
i+(1=2)

�Fni+(1=2)

�FRi+(1=2) =
1
2

(
1− �t

�x
J
)n
i+(1=2)

�Fni+(1=2)
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and a numerical �ux

F∗
i+(1=2) =

1
2

[
Fni + F

n
i+1 − �t

�x
(J�F)ni+(1=2)

]

The scheme is not able to deal properly with subcritical to supercritical transitions as it
happens to the �rst order upwind, requiring also the addition of arti�cial viscosity. The use
of a viscosity as de�ned in (37) and further modi�cation of the wave decomposition like in
(35) or the numerical �ux like in (36) cures the problem.
To adapt the Lax–Wendro� scheme to conservation laws with source terms, a new Taylor

series must be performed using the complete equation [19]:

un+1i = uni +
(
S− @F

@x

)n
i
�t +

@
@t

(
S− @F

@x

)n
i

�t2

2
+O (�t3)

= uni +
(
S− @F

@x

)n
i
�t +

{
K
@u
@t

− @
@x

[
J
(
S− @F

@x

)]}n
i

�t2

2
+O(�t3) (39)

Then, a central discretization of the spatial derivatives leads to the extended Lax–Wendro�
scheme with pointwise and semi-implicit source terms discretization:

(
1− 1

2
�tKni

)
�uni = S

n
i�t −

�t
2

[(
�F
�x

)n
i−(1=2)

+
(
�F
�x

)n
i+(1=2)

]

−�t
2

2�x
[(JG)ni+(1=2) − (JG)ni−(1=2)] (40)

or with centred and semi-implicit source terms discretization:(
1− 1

2
�tKni

)
�uni =

�t
2

[(
1 +

�t
�x

Jni−(1=2)

)
Gni−(1=2) +

(
1− �t

�x
Jni+(1=2)

)
Gni+(1=2)

]
(41)

Note that the centred discretization of the source terms is di�erent from the upwind discretiza-
tion and also di�erent from the pointwise discretization. In Lax–Wendro� scheme, only the
centered discretization provides the equilibrium between �uxes and sources at the discrete
level.

5. NUMERICAL RESULTS AND DISCUSSION

The performance of the di�erent methods when applied to the test cases will be shown next.
Figure 4 displays the comparison of the numerical and exact solution to the linear advection
of the initial square pro�le. Figure 4(a) is the result of applying Lax–Friedrichs scheme (LF)
with maximum viscosity (�=1) in 100 cells, and the classical ‘rough’ tendency is noticeable.
The roughness disappears when the global viscosity is reduced to �=0:9 as displayed in
Figure 4(b), where, despite 400 cells have been used, the numerical di�usion associated to
the method is obvious. Figures 4(c) and 4(d) correspond to the TVD and stable versions of
the Optimized Lax–Friedrichs scheme (OLF) respectively, and Figures 4(e) and 4(f) are the
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Figure 4. Linear advection of a square using LF with �=1 (a) and with �=0:9 (b), TVD OLF (c),
stable OLF (d), upwind (e) and LW (f) with, CFL=0:5.

results from the �rst order upwind and Lax–Wendro� (LW) scheme respectively. It is clear
that in this case the TVD OLF is equivalent to the �rst order upwind and the stable OLF to
the LW scheme, these showing oscillations near the strong gradient.
The same can be observed for the linear advection of an initial gaussian pro�le. This is

displayed in Figure 5. In this case, the stable OLF and LW methods do not show oscillations
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Figure 5. Linear advection of a gaussian using LF (a), TVD OLF (b), stable OLF (c), �rst order
upwind (d) and LW (e) with, CFL=0:5.

due to the smoothness of the pro�le and they are more accurate than TVD OLF and �rst
order upwind.
Figure 6 corresponds to the exact and numerical results for the Burgers test case. Only

the OLF, upwind and LW schemes are compared here. It is worth noting that, due to the
initial values in this test case, a sub-super transcritical point is present in the solution. The
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Figure 6. Inviscid Burgers solution using TVD OLF (a), stable OLF (b), �rst order upwind with (c)
and without (d) entropy correction, LW with (e) and without (f) entropy correction.

results show the inaccuracy of the �rst order upwind and LW when dealing with this transi-
tion in Figures 6(d) and 6(f) and how the addition of arti�cial viscosity cures the problem
in (c) and (e) as announced. It is also interesting to note that in this non-linear problem
the TVD OLF and stable OLF results are similar to the entropy corrected upwind and LW
schemes.
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Figure 7. Dam break solution using LF (a), OLF (b), �rst order upwind with (c) and without (d)
entropy correction, LW with (e) and without (f) entropy correction.

Figure 7 displays the exact and numerical solutions to the dam break test case. The basic
LF scheme produces a reasonable result in this case. From now on, only the TVD OLF will
be used for monotonicity reasons. It is displayed in Figure 7(b). The numerical problems
at the critical transition are also present in Figures 7(d) and 7(f) and solved by controlled
addition of arti�cial viscosity Figures 7(c) and 7(e).
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Figure 8. Water surface and discharge pro�le in Goutal and Maurel’s test
case using LF (a), (b) and OLF (c), (d).

Figures 8 and 9 show the exact and numerical solution to the Goutal–Maurel test case by
means of the water level and discharge pro�les. The exact solution is trivial and corresponds
to zero discharge and horizontal water level. This is perfectly reproduced by all the schemes
except the basic LF and the LW with pointwise source term (40). In the case of the �rst order
upwind scheme, the source terms have been decomposed like in (32) leading to the correct
solution as expected from previous works on upwind schemes. This is a good example to
demonstrate, on the one hand, the importance of an adequate source term discretization both
in upwind and central schemes and, on the other hand, the bad consequences that a careless
arti�cial viscosity can generate in presence of relevant source terms on the solutions of an
apparently simple numerical scheme.
Figures 2 and 10 are the representations of the exact and numerical water depth and dis-

charge pro�les at steady state for the MacDonald-1 test case. It is a subcritical and smooth
solution and, therefore, there are not noticeable di�erences among the OLF, upwind and LW
results. However the LF scheme is again inaccurate at steady state. The results corresponding
to MacDonald-2 test case are presented in Figures 11 and 12. Again, the improvement intro-
duced in the results by the optimization to LF scheme is remarkable. Being a solution with
several critical transitions, only the entropy corrected upwind and LW schemes have been
used. Typical discharge oscillations at the hydraulic jump location are present in all schemes.
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Figure 9. Water surface and discharge pro�le in Goutal and Maurel’s test case using upwind (a), (b),
LW with centred source terms (c), (d) and LW with pointwise source terms (e), (f).

6. APPLICATION TO RIVER FLOW

The numerical schemes previously discussed are now applied to a case of practical interest.
The river reach used for the simulation belongs to the lower part of the Ebro river (Zaragoza,
Spain) and therefore has very mild average slope and low water velocities. However, the river
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Figure 10. Water depth and discharge at steady state in the MacDonald-1 test case using the �rst order
upwind (a), (b) and LW scheme (c), (d) with �x=0:375 m and CFL=0:9.

cross section is highly variable in shape along the axis of the river and presents an irregular
tendency in the bottom level variation leading to adverse and important slopes in some parts.
This can be observed when the bottom pro�le along the river is plotted.
The total length of the simulated reach is around 11:4 km. Geometric data were available

at 64 cross sections. As we were mainly interested in testing the performance of the di�erent
methods in presence of a gradually varied practical case dominated by the bed topography
source terms, the Manning coe�cient was assumed uniform and equal to 0.03 in IS.
A �rst run supplied the initial condition for the �ooding simulation. This �rst run started

from dry bed and introduced an upstream constant discharge of Q=200 m3=s until conver-
gence. Using the converged steady state as base �ow, the �ood was represented by means of
an upstream hydrograph. The shape of this hydrograph was simpli�ed making it triangular and
only the peak discharge, Q=5300m3=s, at t=12 h, corresponded to the estimated maximum
discharge for the �ood event of return period equal to 500 years. From the numerical point of
view, 400 nodal values were used and a CFL=0:9 leading to a CPU time of around 7min for
the 36h simulated on a Pentium II PC. Figures 13 and 14 display the results of the numerical
schemes for the water depth and discharge pro�les at base �ow, Q=200m3=s, corresponding
to t=0 for the �ood wave simulation and Q=5300 m3=s, corresponding to t=12 h in the
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Figure 11. Water depth pro�le and discharge at steady state for the MacDonald-2 test case using LF
(a), (b), OLF (c), (d) and �rst order upwind (e), (f).

simulation. As it can be observed, only the LF scheme is unable to give smooth and conser-
vative results, being the solution spoiled by the interference of the arti�cial viscosity and the
source terms. On the other hand, all three schemes OLF, upwind and LW give very similar,
conservative and well behaved results.
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Figure 12. Water depth (a) and discharge (b) pro�le at steady
state in MacDonald-2 test case using LW.
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Figure 13. Water surface and discharge pro�les at base �ow (t=0) and at t=12 h
using LF (a), (b) and OLF (c), (d).
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Figure 14. Water surface and discharge pro�les at base �ow (t=0) and at t=12 h using �rst
order upwind (a), (b) and LW (c), (d).

7. CONCLUSIONS

A rigorous study of the Lax–Friedrichs, �rst order upwind and Lax–Wendro� scheme has
been presented and their properties, according to traditional analysis established.
Lax–Friedrichs scheme is �rst order in space in time and dissipative due to a global arti�cial

viscosity coe�cient. Two possibilities for the de�nition of a local arti�cial viscosity have been
presented. They lead to performances of the scheme close to those of the �rst order upwind
scheme and the (second order) Lax–Wendro� scheme. The distortion in the solution caused by
the interference between the arti�cial viscosity and the irregularities in the channel geometry
has been identi�ed and an optimization of the LF scheme has been proposed.
Lax–Wendro� scheme has been carefully derived for equations with source terms as a

generalization of the classical method originally developed for homogeneous conservation
laws. The necessity to supply this method with an arti�cial viscosity in sub-super transition
points has been signaled.
Several steady and unsteady one-dimensional examples with exact solution have been used

to validate the numerical results provided by the schemes and the suitability of the proposed
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modi�cations. According to the solutions obtained, it can be concluded that the optimization
proposed for the Lax–Friedrichs scheme strongly improves the performance of this method
both in simple and complex cases. At the same time, the modi�cation does not involve extra
calculations, keeping the method very simple and intuitive.
The addition of a local arti�cial viscosity to the �rst order upwind and to the Lax–Wendro�

has been proved necessary in critical transitions and a useful expression for it has been sup-
plied and validated. At the same time, the necessity to balance the discretization of �uxes and
sources in Lax–Wendro� scheme, as in upwind schemes, has been pointed out and demon-
strated in the test cases.
Finally, the methods have been used for the simulation of a �ood wave in a river reach,

showing the same trend. In cases of gradually varied river �ow, it can be concluded that a �rst
order scheme, if carefully discretized to balance �uxes and sources, gives results similar to a
second order scheme. Within �rst order methods, the choice between an upwind or a central
method like the optimized Lax–Friedrichs scheme is open since the latter is considerably
simpler and produces almost similar results to the former.

APPENDIX A: SOME PROPERTIES OF THE 1D NUMERICAL SCHEMES

Some interesting and desirable properties will next be de�ned for the sake of further compar-
ison among the numerical schemes.

A.1. Conservation

Any conservation equation in integral form, when extended to the full domain

∫ t

0
dt
∫ L

0
dx
(
@u
@t
+
dF
dx

)
=
∫ t

0
dt
∫ L

0
dx S⇒

∫ L

0
[u(x; t)− u(x; 0)] dx

=
∫ t

0
dt(F0 − FL) +

∫ t

0
dt
∫ L

0
dx S (A1)

means that the variation in the conserved variable is due to the net balance between the in-
coming and outgoing �uxes plus the contribution of the source/sink terms. Numerical schemes
preserving this important property are called conservative schemes.
The most common de�nition of a conservative scheme is that accepting the following

structure [18]:

�uni =�t
[
S∗
i − 1

@x
(F∗
i+(1=2) − F∗

i−(1=2))
]

(A2)

where S∗ and F∗ are the numerical source and �ux, respectively. They represent a convenient
approximation to the true source and �ux terms. Using � for time increments and � for space
increments, the schemes so de�ned provide a numerical cancellation of the �ux contributions

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:125–156



152 J. BURGUETE AND P. GARC�IA-NAVARRO

at the internal cell edges, hence generating time variations in the conserved variable only by
boundary and source terms in�uence.

∑
n

∑
i
�uni �x≈

∫ L

0
[u(x; t)− u(x; 0)] dx

∑
n

∑
i

[
S∗
i − 1

@x
(F∗
i+(1=2) − F∗

i−(1=2))
]
�t�x≈

∫ t

0
dt(F0 − FL) +

∫ t

0
dt
∫ L

0
dx S

An equivalent form of de�ning conservative schemes is to de�ne a nodal �ux FTi and to
decompose in waves the cell �ux di�erence.

�FTi+(1=2) = �F
R
i+(1=2) + �F

L
i+(1=2)

�uni =�t
[
S∗
i − 1

�x
(�FRi+(1=2) + �F

L
i−(1=2))

]
(A3)

There is an equivalence between both formulations:

F∗
i+(1=2) =F

T
i + �F

R
i+(1=2) =F

T
i+1 − �FLi+(1=2)

The accuracy of the numerical schemes is much improved if the source terms involving
spatial derivatives are discretized in the same way [12, 13, 19, 20]. De�ning:

STi+(1=2) =S
R
i+(1=2) + S

L
i+(1=2)

numerical schemes with non-centred source terms can be built:

�uni =�t

[(
S− �F

�x

)L
i−(1=2)

+
(
S− �F

�x

)R
i+(1=2)

]
(A4)

Conservative schemes can also be derived from the quasi-conservative (1) and the non-
conservative (5) form of the equations. These are simpler than (3), but it is necessary to
establish the following condition at the discrete level

Gi+(1=2) ≡
(
Sc − �Fc

�x

)
i+(1=2)

=
(
Sqc − �Fqc

�x

)
i+(1=2)

=
(
Snc − J �u

�x

)
i+(1=2)

(A5)

It must be noted that this requires a non-centred discretization of the source term. In the
shallow water equations, the equality holds using:

Snc =

(
0

gA(S0 − Sf − �h
�x +

1
B
�A
�x )

)
i+(1=2)

; Ji+(1=2) =
(

0 1
c2 − v2 2v

)
i+(1=2)

ci+(1=2) =
√
gAi+(1=2)Bi+(1=2)

; vi+(1=2) =
Qi+1=

√
Ai+1 +Qi=

√
Ai√

Ai+1 +
√
Ai

(A6)
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If (A5) is satis�ed there are three equivalent forms based on the de�nition of a generalized
G: the classical conservative scheme with non-centred source term:

Gi+(1=2) ≡
(
Sc − �Fc

�x

)
i+(1=2)

(A7)

the conservative method based on the quasi-conservative formulation

Gi+(1=2) ≡
(
Sqc − �Fqc

�x

)
i+(1=2)

(A8)

and the conservative method based on the non-conservative formulation

Gi+(1=2) ≡
(
Snc − J �u

�x

)
i+(1=2)

(A9)

all of them (A7)–(A9) requiring a non-centred treatment of the source terms and admitting a
wave decomposition in the form (A4):

�uni =�t(G
L
i−(1=2) +G

R
i+(1=2)) (A10)

Conservative schemes can also be derived from the characteristic form of the equations here
rewritten as

@w
@t
=P−1Snc −� @w

@x
=P−1

(
Snc − J @u

@x

)
=P−1G (A11)

A discrete wave decomposition can be made ensuring conservation

(P−1G) i+(1=2) = (�
LP−1G)i+(1=2)(�

RP−1G) i+(1=2) (A12)

(�L +�R) i+(1=2) = I (A13)

where �L and �R are matrices to be de�ned in any case. Returning to conservative formu-
lation via P,

�uni =�t[(P�
LP−1G) i−(1=2) + (P�

RP−1G) i+(1=2)] (A14)

A.2. Numerical stability

Another important property is the stability in the propagation of small perturbations. Both the
�ow equations and the scalar transport di�erential equations have a linear behaviour in the
epropagation of small perturbations. For that reason, the numerical schemes used to discretize
are expected not to amplify them. The analysis of the behaviour of the numerical schemes
in the case of the linear advection equation is called the Von Neumann analysis [18], and
represents the basis of most of the numerical stability conditions.
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Given the linear scalar equation:

@u
@t
+ a

@u
@x
=0

and a general three point scheme of the form

un+1i + A(�un+1i+(1=2) + �u
n+1
i−(1=2)) + B(�u

n+1
i+(1=2) − �un+1i−(1=2))

= uni + C(�u
n
i+(1=2) + �u

n
i−(1=2)) +D(�u

n
i+(1=2) − �uni−(1=2)) (A15)

the ampli�cation factor of the scheme is de�ned as

G=
un+1i

uni
(A16)

and a scheme will be stable whenever the following holds for all the Fourier waves in the
solution:

|G(�)|61 (A17)

if the above inequality does not hold for some value of �, the perturbations with the corre-
sponding wavelength will be exponentially ampli�ed. The general three point scheme (A15)
is stable provided that:

2C2 −D62A2 − B
2D2 −D62B2 − B

(A18)

A.3. Total variation diminishing

Even though stability ensures that perturbations do not grow in time, they do not prevent
oscillations from appearing. The concept of total variation diminishing (TVD) is introduced
to de�ne schemes free from numerical oscillations. The total variation is de�ned as [18]

TV n=
∑
i

|�uni+(1=2)| (A19)

The scheme will be said to be TVD if [12]

TV n+16TV n (A20)

Both numerical oscillations and instabilities increase the total variation of a numerical
scheme, therefore the TVD conditions are always more restrictive than the stability condi-
tions. It will next be recalled the conditions ensuring that a general three point scheme is
TVD. From (A15):

�un+1i+(1=2) + A(�u
n+1
i+(3=2) − �un+1i−(3=2)) + B(�u

n+1
i+(3=2) − 2�un+1i+(1=2) + �u

n+1
i−(1=2))

= �uni+(1=2) + C(�u
n
i+(3=2) − �uni−(3=2)) +D(�uni+(3=2) − 2�uni+(1=2) + �uni−(1=2))
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and using triangular inequalities:

|(1− 2B)�un+1i+(1=2)| − |(B+ A)�un+1i+(3=2)| − |(B− A)�un+1i−(1=2)|

6|(1− 2D)�un+1i+(1=2)|+ |(B+ A)�un+1i+(3=2)|+ |(B− A)�un+1i−(1=2)|

Adding up all terms and rearranging:

(|1− 2B| − |B+ A| − |B− A|)TV n+1

6 (|1− 2D|+ |D+ C|+ |D − C|)TV n

Therefore the su�cient (but not necessary) condition for a TVD scheme are

|1− 2B| − |B+ A| − |B− A|= |1− 2D|+ |D+ C|+ |D − C|=1
which holds whenever:

B6− |A|; 1
2¿D¿|C| (A21)

This condition also ensures the stability conditions for a three point scheme (A18).
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